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Wave Functions in Disordered Systems 
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Particular solutions of the stationary Schrodinger equation for a d-dimensional 
disordered tight binding model are found. The particular solution is defined by 
boundary conditions on one face of the system. The determination of the rate of 
growth of the mean square wave function leads to an exactly soluble eigenvalue 
problem in d - 1 dimensions. For d/> 2 there are three types of particular wave 
functions in which the mean square amplitude (a) grows exponentially (b) 
decays exponentially (c) does not grow or decay but oscillates. 
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The properties of the electronic states of disordered quantum systems are of 
considerable interest. Most of the known exact results are for one- 
dimensional (d = 1) systems, and in this case it has been established under 
quite general conditions that all eigenstates are localized. A review of this 
work has been given by Ishii. (1) Most of the discussions of this problem 
consider particular solutions of the stationary Schr6dinger equation, i.e., 
solutions for given energy with boundary conditions prescribed on one edge 
of the system, and show that the solution grows exponentially with proba- 
bility unity. It is then argued (Borland (2)) that eigenstates for a long but 
finite system occur at those energies where an exponentially growing wave 
function on the left can be matched to an exponentially growing function 
from the right. It is thus of considerable interest to investigate the proper- 
ties of particular solutions of the Schr6dinger equation for disordered 
systems in higher dimensions. In this paper we show that the problem of 
particular solutions can be exactly solved in any dimension for tight 
binding models with diagonal disorder. The determination of the rate of 
growth of the mean square wave function in d dimensions leads to an 
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eigenvalue problem. This eigenvalue problem is equivalent to determining 
the eigenvalues of a single impurity in an otherwise periodic system in d - 1 
dimensions. We show that in disordered systems with d > 2 there are three 
kinds of particular wave functions, those where the mean square amplitude 
(a) grows exponentially, (b) decays exponentially, and (c) does not grow or 
decay but oscillates. 

We begin by considering the tight binding Anderson model (3) in two 
dimensions with Schr6dinger equation 

Eai ,  j = s -'}- ai+ l, j -}- a i _ l ,  j -1- ai,j+ 1 + ai , j_ 1 (1) 
where E is the energy, ai, j is the wave function amplitude on the site in row 
i column j of a two-dimensional square lattice, and c o is the energy of this 
site. The units of energy have been chosen so that the nearest neighbor 
transfer energy is unity. The ,~j are mutually independent, random variables 
with a common distribution. The zero of energy is chosen so that ~,~j) = 0 
and the second moment  is 

(,2> = (2) 

The lattice is semi-infinite in the row direction to the right and each column 
has N sites and periodic boundary conditions are imposed in this direction. 
The amplitudes of the wave function in the first two columns on the left 
(say 0 and 1) are given. We denote these by a 0 = a l o ' ' ' a u o  and a I = 
a ~ . . . a u l .  Alternatively we could consider a lattice infinite in the row 
direction with the left half ordered and the right half disordered. A wave 
function of energy E on the left in the ordered region is given and we ask 
how this wave function grows in the disordered region. 

We define a 2N column vector of the amplitudes in columns i - 1 and 
i by {,,} 

a i - 1  = { a l , i ,  a l , i _ l ,  . . . , aN,i,  a N , i _ l }  (3) 
We can then find a 2N x 2N transfer matrix T (~ for column i which 
relates the amplitudes in columns i and i + 1 to those in i - 1 and i: 

ai+ a/l} = T(/){ ai (4) 
a i -  1 ) 

The transfer matrix is conveniently written as an N • N matrix in which 
each element is a 2 • 2 matrix. The elements of this latter matrix are 
denoted by Tj {i) ( j ,  k = 1 . . . N)  and are 

T j ( i ) =  W j ( i ) _ .  ( E -  ,ij , - l )  
\ l, o (5) 

Tj(i) ,j+_l= Q = - � 8 9  

where o~ is the Pauli matrix (o~ = 1). 
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From (4) the mean square amplitudes in columns L and L + 1 of the 
disordered region are 

(laL+,l 2 + laLI 2) = ( a ~ ' , a ~ ) M  L ao (6) 

where 

M c = (7  ~ ( 1 ) . . .  7~(L)T ( z ' ) . . .  T ( 0 )  (7) 

and 7 = is the transpose of T. We are thus led to consider the eigenvalues of 
the matrix equation 

)tM L = ( "FM L T )  (8) 

The eigenvalues )t determine the rate of growth of the mean square 
amplitudes (6) because (]aLl2)~)k L. To solve this equation we must decide 
on the form of the 2N • 2N matrix M E. We write it as an N • N matrix 
with each element a 2 x 2 matrix, and from the symmetry of the problem 
this block matrix must be cyclic. It is thus determined by its first row, 
which we denote by m l . . . m  N, where each mj is a 2 • 2 matrix. The 
recursion relations for the mj from (8) and (5) are [omitting the column 
index i in (5)] 

~.mj = ( l, TV l mj Wj + Wl(mj_ 1 + mj+,) Q 

+ Q ( m j _ , + m j + , ) W j + Q ( m j _ 2 + 2 m j + m j + 2 ) Q )  (9) 

We are thus led to consider a one-dimensional problem, the elements of 
which are 2 • 2 matrices. There is a single impurity (at site 1), which results 
from the average of the first term on the right of (9) for j =  1, in an 
otherwise periodic system. 

We first solve (9) for the special case E = 0, i.e., the center of the band. 
The matrices rnj are real and symmetric and a convenient representation in 
terms of Pauli matrices a x and % is 

mj = �89 Uj(1 + %) + �89 Vj(1 - oz) + I'Vjo x (10) 

Substituting (lO) in (9) and carrying out the average, the coefficients in (10) 
satisfy 

~.Uj = (2 + aSj,,)Uj + Vj + Uj_:  + Uj+ 2 - 2 (Wj_ ,  + Wj+,)  

>,v+ = g ( l l )  

~kWj = Uj_I -{- g j + 1 -  W j 

In the absence of disorder (a = 0) these equations are solved by setting 

( g ,  V/, Wj ) = ( U, V, W ) e  ikj (12) 

with k = 2~rl/N (l = 1 �9 �9 �9 N) .  The eigenvalues are 

h =  1,e +-2ik (13) 
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and are distributed on the unit circle in the complex plane. These solutions 
correspond to propagating waves in the original two-dimensional lattice 
with wave vector ~r - k (for E = 0) along the rows. We get three eigenval- 
ues because the eigenvalues of T in the perfect lattice are e -+ik and the 
eigenvalues of the matrix equation (8) are the three different products of 
these two eigenvalues. 

In the presence of the single impurity the problem may be completely 
solved (see Maradudin et a/.(4)). The eigenvalues of (11) are determined by 
the dispersion relation 

o X()t + 1) 
1 = ~ ~ ( ) t -  1)(7~- e2'k)(2t- e -2'k) (14) 

The sum on k in (14) gives (for N even) 

1 - oX )t N/2 + 1 (15) 
( ) t -  1) 2 )t N / 2 -  1 

There is one eigenvalue with IXl > l given by (in the N--) m limit) 
t o( X 0 = l + ~ +  o + - ~ -  (16) 

The remaining eigenvalues are of the form X k = e2ik(1 - OSk/N) where 6 k 
has a positive real part. These eigenvalues lie inside the unit circle but as 
the width of the strip N o r a  I)tk[-+ 1. In general the wave function will 
contain a part which grows exponentially due to the large eigenvalue (16) 
and given by 

( l a L +  1 [2 + [aLl2)~exp(g log •0) (17) 

This is similar to results in d = 1.2 The important difference between d = 1 
and d = 2 is that for d = 1 there is one growing and one decaying exponen- 
tial solution while for d = 2 there is one growing (for E = 0) and O(N) 
solutions in which the wave function does not grow or decay. It can be 
shown that it is possible to choose the initial boundary conditions so that 
the particular wave function is of this latter type, i.e., is not exponentially 
growing or decaying. There thus exist extended particular wave functions in 
d = 2 .  

The dispersion relation (14) is easily generalized to the case E ~ 0 in 
d = 2 and higher dimensions. In d dimensions we consider a semi-infinite 

2 In the d = 1 case the large eigenvalue is given by 

X = ~ +  1+  f o r E =  0 
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hypercubic  lattice with a cross section with side containing N atoms. 
Periodic bounda ry  conditions are imposed in the d - 1 transverse directions 
and  we introduce wave vector k~ = 2~rl,~/N, a = 1 . . - d - 1  and  l~ = 
1 �9 �9 �9 N. For  fixed energy E we define 

c o s 0 ( k )  = E / 2  - ( c o s k ,  + . . .  + cosk _,) (18) 

Physically 0 is the propagat ion  constant  along the semi-infinite direction. 
For  E within the band  of the ordered crystal 0 assumes real values when 
the modulus  of the r ight-hand side is < 1 and is complex when this 
modulus  > 1. The solutions of (18) where 0 is complex correspond to 
exponentially growing or decaying surface states. For  E outside the band  it 
is always complex. The solution of the problem in d dimensions follows the 
same method  as for d = 2 and  the dispersion relation for the eigenvalues of 
(8) is 

1 (19) N a-' (~k~) ( X -  1 ) ( X -  e2i~ e -2i~ 

F r o m  (17) and (18) it can  be shown that  for E within the b a n d  the 
distribution of eigenvalues for N---> ~ is of the form shown in Fig. 1. The 
eigenvalues with [~[ = 1 lie a round  the unit  circle and  those with ~ > 1 and  

< 1 along the real axis. For  E outside the b a n d  only eigenvalues with 
X > 1 and X < 1 exist. We thus find for all d > 2 that  for E within the band  
there exist part icular  wave functions whose mean  square amplitudes either 
grow exponentially, decay exponentially, or oscillate a round  the initial 

f 

Fig. 1. Distribution of eigenvalues of the dispersion relation for E within the band (denoted 
by heavy lines and cross). Propagating solutions lie on the unit circle, exponentially growing 
and decaying surface states lie on the positive real axis, and the exponentially growing solution 
due to disorder is denoted by a cross. 
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values.  3 These  wave  funct ions  are  not  d i rect ly  re la ted  to the e igenfunct ions  
of the system. However ,  it  is reasonable  to argue,  as in the d = 1 case, that  
eigenstates  for a large finite system occur  at  those energies where  states 
f rom the left ma tch  those f rom the right. The  exponent ia l ly  growing 
pa r t i cu la r  wave funct ions  are then associa ted  with local ized eigenstates  and  
the ex tended  pa r t i cu la r  wave funct ions  with ex tended  eigenstates.  Of course 
this a rgumen t  is not  r igorous nor  does  it indicate  for which energies we 
expect  local ized or  ex tended  eigenstates.  The  above  results on the par t i cu la r  
wave  funct ions  do suggest  the existence of bo th  k ind  of states in d i so rdered  
systems with d / >  2. 
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